Role of Simulation in Training a Hepatic Surgeon

Stephen Chang
Assoc Professor,
National University of Singapore
Head(A), Srn Consultant Hepatopancreatobiliary Division
Liver Transplant Surgery
National University Hospital

Lead, Liver Tumor Group,
National University Cancer Institute, Singapore

President
Hepatopancreatobiliary Association of Singapore

cfscky@nus.edu.sg
Overview of Sections

1. History of Medical Simulations
2. Types of Surgical Simulations
3. Impacts of Simulations
4. How can Educators do Better?
5. Future of Surgical Simulations
Declaration

• Architecture for Image-Guided Robot Assisted Surgical Training (IRAS). Patent No.: 201001593-1
What is Simulation?

simulation

(n.) the representation of the behavior or characteristics of one system through the use of another system, especially a computer program designed for the purpose.

Image from Penn Medicine
History of Medical Simulation (Pre-90’s)

Case of Military Simulation

First Plastic Skeleton

Resusci Annie was born

Link Trainer – First Flight Simulator

First Rocket Flight Simulator

Comprehensive Anesthesia Simulation Environment built

History of Medical Simulation (Post-90’s)

1991
- Development of KISMET Simulator for Telesurgery

1993
- Release of Super Nintendo

2000
- Laerdal SimMan begins beta testing
- Virtual Reality 'Patient' Teaches Bedside Manners

2007
- First robotic surgery simulator prototype

2012
- Development of Robot-assisted Trainer

Types of Surgical Simulations

<table>
<thead>
<tr>
<th>Simulator Type</th>
<th>Mechanism</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Didactic Scenario Based</td>
<td>• Directed Viva
• Group discussion</td>
<td>• No equipment cost</td>
<td>• Low Fidelity</td>
</tr>
<tr>
<td>Box or Mechanical Models</td>
<td>• Task-based training
• Ranges from basic enclosures to complex powered systems</td>
<td>• Effective in acquiring psycho-motor skills</td>
<td>• Low-Medium Fidelity</td>
</tr>
<tr>
<td>Virtual Reality (VR) and Haptic Systems</td>
<td>• Computer-based technology
• Allows scenario-based training
• Often integrated with physical interaction and haptic feedback</td>
<td>• Medium-High fidelity
• Growing evidence of effectiveness</td>
<td>• Expensive equipment</td>
</tr>
<tr>
<td>Biological or Animal Models</td>
<td>• Working with animal tissues prior human</td>
<td>• Highest fidelity among all
• Ethical issues
• Expensive upkeep</td>
<td></td>
</tr>
</tbody>
</table>
Impacts of Simulations on Skills

- Comparisons were studied before and after training with endovascular simulator
- Significant improvement in skills and knowledge after undergoing simulation

<table>
<thead>
<tr>
<th>TABLE 1. Simulator-Generated Objective Performance Criteria for the Entire Cohort of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 41 Medical Students</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pretest Mean</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Procedure time (min)</td>
</tr>
<tr>
<td>Time to aortogram (min)</td>
</tr>
<tr>
<td>Time to intervention (min)</td>
</tr>
<tr>
<td>Residual stenosis (%)</td>
</tr>
<tr>
<td>Lesion covered (%)</td>
</tr>
<tr>
<td>Placement accuracy (mm)</td>
</tr>
<tr>
<td>Fluoroscopy time (min)</td>
</tr>
<tr>
<td>Contrast injected (ml)</td>
</tr>
<tr>
<td>Activated clotting time at intervention (sec)</td>
</tr>
</tbody>
</table>

Maran, N. J., & Glavin, R. J. (2003). Low- to high-fidelity simulation - a continuum of medical education?
Study investigates the Transfer-Effectiveness Ratio of a surgical VR
TER used in airline industry to assess quality of simulator
TER score of 2.28: 1 min. on VR simulator = 2.28 mins. on cadaveric porcine cholecystectomy

FIGURE 5. Learning curves for control and VR-trained groups for video-based rating score, and benchmark levels of experienced surgeons.
How can Educators do Better?

- Improving the fidelity of training instruments
- ‘Hands-held’ training vs ‘trial and error’ training
- Efficacy of 1 trainer vs multiple trainees
Surgical Trainer using Animal-organ Reperfusion (STAR)

- Low-cost model that mimics organ bleeding
 - Dyed water is pumped to simulate circulation
 - Pressure can be adjusted to simulate types of bleeding

- Easily reproducible and reusable training tool

Surgical Trainer using Animal-organ Reperfusion (STAR)

- The main components of the model include:

(i) Casing (ii) Pump system (iii) A porcine liver – hepatic artery and bile duct are ligated to prevent ‘back bleed’

Improvement in suturing skill was seen with repeated practice

- Participants approached performance set by an experienced surgeon

Surgical Trainer using Animal-organ Reperfusion (STAR)

![Image of surgical trainer setup with a computer monitor and medical equipment]

Fig 5.8.1 Progress of Suture timing

Image-guided Robot Assisted Surgical-training (IRAS)

- Consists of 3 systems:
 - Recording platform
 - Robotic laparoscopic surgical trainer platform
 - ‘Free-play’ assessment platform

Image-guided Robot Assisted Surgical-training (IRAS)

- 12 students viewed video of cholecystectomy in porcine done by expert surgeon

- Group A underwent IRAS training vs. Group B dry box training

- Both groups went on to perform cholecystectomy on pigs

Table 1 Surgeon and participants’ performance evaluated by average task time, trajectory length of the left and right instruments

<table>
<thead>
<tr>
<th>Test session</th>
<th>Participants</th>
<th>Time (s)</th>
<th>Left (mm)</th>
<th>Right (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Surgeon</td>
<td>239.5 ± 38</td>
<td>530.1 ± 184.4</td>
<td>1512.0 ± 144.2</td>
</tr>
<tr>
<td></td>
<td>Group A</td>
<td>246.7 ± 70.9</td>
<td>579.8 ± 275.4</td>
<td>1578.3 ± 369.0</td>
</tr>
<tr>
<td></td>
<td>Group B</td>
<td>268.4 ± 149.5</td>
<td>978.7 ± 861.4</td>
<td>1850.6 ± 824.0</td>
</tr>
<tr>
<td></td>
<td>p value</td>
<td>0.18</td>
<td><0.001</td>
<td>0.011</td>
</tr>
</tbody>
</table>
Impacts of Simulations on Interest

18 months after their live porcine surgery training, they were surveyed on their interest in surgery.

- Results did not show a significantly increase interest in surgery but students better appreciated psychomotor abilities.
- Exposure was highly recommended to juniors before residency application.

Impacts of Simulations on Interest

- Early exposure to simulators provides an effective recruitment tool for students
- Simulation experience shown to enhance interest in Cardiothoracic Surgery

Impacts of Simulations on Interest

- Early exposure provides an effective teaching and recruitment tool for students
- Ability to practice on simulator was a major reason for continued interest (1-3 years)

Future of Surgical Simulation

We look to the entertainment industry:

“Surgeon Simulator 2013 is not a brilliant game. But it is a brilliant joke...”

Rock, Paper, Shotgun
Future of Surgical Simulation

• Augmented Reality (AR) could be the next big thing...
 • Focus on affordable wearables: Google Glass, Microsoft Halolens
 • Developed Medical Mobile App & Wireless Infrastructure

Creating with Microsoft Halolens
Testing of Google Glass during Surgery
Conclusions

• Simulators have definite value in surgical training

• Fidelity of the simulators commensurate the training efficacy

• Various forms of simulators are available

• Simulators may increase the interest towards the speciality
Role of Simulation in Training a Hepatic Surgeon

Thank you.

Acknowledgments

STAR
Chun Siong Lee & Chee Kong Chui

IRAS
Weimin Huang, Tao Yang, Liang Jing Yang, Chee Kong Chui, Jimmy Liu, Jiayin Zhou, Jing Zhang & Yi Su

Project Funded by A*STAR BEP programmes
Impact of Games on Surgical Skills

- Study showed surgeons who played video games in the past (>3 h/wk) performed better in a simulator than non-video gaming group.

- Another study showed how a video game as a preoperative warm-up increased peg transfer and cobra rope scores.

Fig. 1 A photo of the custom-made underground hardware and an in-game screenshot of the game.

Introduction of game mechanics significantly boosted the usage of training simulator.

Leaderboards were posted every 1-2 weeks. Tournament prizes ranged from $50 to an iPad.

Video games used to stimulate and intensify voluntary training in young surgeons.